Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ji-Xin Yuan, ${ }^{\text {a }}$ Zhen-Lu Shen, ${ }^{\text {b }}$ Li Li, ${ }^{\text {c }}$ Xin-Yuan Song ${ }^{\text {a }}$ and Zhi-Min Jin ${ }^{\text {c }}$ *

${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Donghua University, Shanghai 200051, People's Republic of China, ${ }^{\text {b }}$ College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ${ }^{\mathrm{c}}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: zhimin-j@tom.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.099$
$w R$ factor $=0.176$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Dicyclohexylammonium 1-(2-hydroxy-1-naphthyl)-2-naphtholate

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}^{+} \cdot \mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{2}{ }^{-}$, the naphtholate anions are linked via an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, and are connected to the dicyclohexylammonium cations by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

1,1'-Bi-2-naphthol (binaphthol) is usually used as a precursor for asymmetric catalysis ($\mathrm{Pu}, 1998$), as a host for molecular recognition and enantiomer separation (Reeder et al., 1994), and also as an intermediate for the synthesis of chiral materials (Zhang \& Schuster, 1994). Many compounds of binaphthol have been studied previously (Periasamy et al., 1997; Dobashi et al., 1998; Lee et al., 1999; Du et al., 2002; Chandrasekhar et al., 2003; Cheung et al., 2003). Recently, the title compound, (I), has been obtained and its structure (Fig. 1) is discussed here.

(I)

Compound (I) consists of one dicyclohexylammonium cation and one 2-hydroxynaphthene-1-yl-2-naphtholate (NANAT) anion, where the binaphthol molecule loses a proton from one of the two hydroxyl groups. The $\mathrm{C} 12-\mathrm{O} 2$ bond length $[1.317$ (4) \AA], where the O atom is anionic, is much shorter than the neutral $\mathrm{C} 2-\mathrm{O} 1$ bond $[1.364$ (4) \AA]; this is consistent with the results of other studies (Goddard et al., 2002; Sharma et al., 2005). The two naphthalene ring systems are less twisted than those of binaphthol itself. This is indicated by the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12$ and $\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 20$ torsion angles [$-79.2(4)$ and $-77.0(4)^{\circ}$, respectively], the absolute values of which are significantly smaller than those of binaphthol [88.3 (3) and $88.6(3)^{\circ}$, respectively; Mori et al., 1993].

In the crystal structure, the NANAT anions are linked via an $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$ hydrogen bond (symmetry codes as in Table 2), and are connected to the dicyclohexylammonium cations by $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}, \quad \mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 1^{\mathrm{ii}}$ hydrogen bonds (Table 2 and Fig. 2).

Received 26 September 2005 Accepted 11 October 2005 Online 15 October 2005

Experimental

Binaphthol and dicyclohexylamine, in a molar ratio of 1:1, were mixed and dissolved in sufficient ethanol by heating to 353 K , to give a clear solution. Crystals of (I) were formed by gradual evaporation of ethanol over a period of one week at 293 K .

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}^{+} . \mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{2}^{-} \\
& M_{r}=467.63 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=14.9935(11) \AA \\
& b=10.1824(7) \AA \\
& c=16.9848(12) \AA \\
& \beta=98.434(2)^{\circ} \\
& V=2565.0(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.211 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1087 reflections
$\theta=2.5-19.9^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.33 \times 0.16 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min }=0.986, T_{\text {max }}=0.991$
13165 measured reflections
4533 independent reflections
3102 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-13 \rightarrow 17$
$k=-12 \rightarrow 11$
$l=-20 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.099$
$w R\left(F^{2}\right)=0.176$
$S=1.21$
4533 reflections
317 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0194 P)^{2}\right. \\
\quad+1.412] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.16 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 2$	$1.364(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.426(4)$
$\mathrm{O} 2-\mathrm{C} 12$	$1.317(4)$	$\mathrm{N} 1-\mathrm{C} 27$	$1.501(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.366(4)$	$\mathrm{N} 1-\mathrm{C} 21$	$1.503(4)$
$\mathrm{C} 1-\mathrm{C} 11$	$1.497(4)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.508(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11$	$121.6(3)$	$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 11$	$122.3(3)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 11$	$119.9(3)$	$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 13$	$120.0(3)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$117.9(3)$	$\mathrm{N} 1-\mathrm{C} 21-\mathrm{C} 22$	$107.7(3)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.4(3)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12$	$-79.2(4)$	$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 20$	$-77.0(4)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}_{1}-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.80	$2.510(4)$	144
N1-H1A O^{i}	0.90	2.07	$2.967(4)$	174
N1-H1B $\cdots 1^{\mathrm{i}}$	0.90	2.23	$2.841(4)$	125
N1-H1B $\cdots \mathrm{O}^{\mathrm{ii}}$	0.90	2.48	$3.366(5)$	168

Symmetry codes: (i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $x, y-1, z$.
All H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of $\mathrm{N}-\mathrm{H}=0.90, \mathrm{O}-\mathrm{H}=0.82$ and $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.97 (methylene) or $0.98 \AA$ (methine), with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve

Figure 1
A view of (I), with the atom-numbering scheme and 40% probability displacement ellipsoids.

Figure 2
A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

References

Bruker (2000). SMART (Version 5.618), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA. Chandrasekhar, S., Kulkarni, G., Muktha, B. \& Row, T. N. G. (2003). Tetrahedron Asymm. 14, 3769-3772.

organic papers

Cheung, E. Y., Kitchin, S. J., Harris, K. D. M., Imai, Y., Tajima, N. \& Kuroda, R. (2003). J. Am. Chem. Soc. 125, 14658-14659.

Dobashi, Y., Kobayashi, K., Sato, N. \& Dobashi, A. (1998). Tetrahedron Lett. 39, 2985-2988.
Du, H. F., Ji, B., Wang, Y., Sun, J., Mengb, J. \& Dinga, K., (2002). Tetrahedron Lett. 43, 5273-5276.
Goddard, R., Herzog, H. M. \& Reetz, M. T. (2002). Tetrahedron, 58, 78477850.

Lee, I. S., Chung, Y. K., Mun, J. \& Yoon, C. S. (1999). Organometallics, 18, 5080-5085.
Mori, K., Masuda, Y. \& Kashino, S. (1993). Acta Cryst. C49, 1224-1227.

Periasamy, M., Venkatraman, L. \& Thomas, K. R. J. (1997). J. Org. Chem. 62, 4302-4306.
Pu, L. (1998). Chem. Rev. 98, 2405-2494.
Reeder, J., Castro, P. P., Knobler, C. B., Martinborough, E., Owens, L. \& Diederich, F. (1994). J. Org. Chem. 59, 3151-3160.
Sharma, R. P., Bala, R., Sharma, R. \& Venugopalan, P. (2005). J. Mol. Struct. 752, 170-177.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, M. \& Schuster, G. B. (1994). J. Am. Chem. Soc. 116, 4852-4857.

